diff options
Diffstat (limited to 'contrib/SDL-3.2.8/src/libm/e_log.c')
| -rw-r--r-- | contrib/SDL-3.2.8/src/libm/e_log.c | 153 |
1 files changed, 153 insertions, 0 deletions
diff --git a/contrib/SDL-3.2.8/src/libm/e_log.c b/contrib/SDL-3.2.8/src/libm/e_log.c new file mode 100644 index 0000000..f935fa7 --- /dev/null +++ b/contrib/SDL-3.2.8/src/libm/e_log.c | |||
| @@ -0,0 +1,153 @@ | |||
| 1 | #include "SDL_internal.h" | ||
| 2 | /* | ||
| 3 | * ==================================================== | ||
| 4 | * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. | ||
| 5 | * | ||
| 6 | * Developed at SunPro, a Sun Microsystems, Inc. business. | ||
| 7 | * Permission to use, copy, modify, and distribute this | ||
| 8 | * software is freely granted, provided that this notice | ||
| 9 | * is preserved. | ||
| 10 | * ==================================================== | ||
| 11 | */ | ||
| 12 | |||
| 13 | #if defined(_MSC_VER) /* Handle Microsoft VC++ compiler specifics. */ | ||
| 14 | /* C4723: potential divide by zero. */ | ||
| 15 | #pragma warning ( disable : 4723 ) | ||
| 16 | #endif | ||
| 17 | |||
| 18 | /* __ieee754_log(x) | ||
| 19 | * Return the logrithm of x | ||
| 20 | * | ||
| 21 | * Method : | ||
| 22 | * 1. Argument Reduction: find k and f such that | ||
| 23 | * x = 2^k * (1+f), | ||
| 24 | * where sqrt(2)/2 < 1+f < sqrt(2) . | ||
| 25 | * | ||
| 26 | * 2. Approximation of log(1+f). | ||
| 27 | * Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s) | ||
| 28 | * = 2s + 2/3 s**3 + 2/5 s**5 + ....., | ||
| 29 | * = 2s + s*R | ||
| 30 | * We use a special Reme algorithm on [0,0.1716] to generate | ||
| 31 | * a polynomial of degree 14 to approximate R The maximum error | ||
| 32 | * of this polynomial approximation is bounded by 2**-58.45. In | ||
| 33 | * other words, | ||
| 34 | * 2 4 6 8 10 12 14 | ||
| 35 | * R(z) ~ Lg1*s +Lg2*s +Lg3*s +Lg4*s +Lg5*s +Lg6*s +Lg7*s | ||
| 36 | * (the values of Lg1 to Lg7 are listed in the program) | ||
| 37 | * and | ||
| 38 | * | 2 14 | -58.45 | ||
| 39 | * | Lg1*s +...+Lg7*s - R(z) | <= 2 | ||
| 40 | * | | | ||
| 41 | * Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2. | ||
| 42 | * In order to guarantee error in log below 1ulp, we compute log | ||
| 43 | * by | ||
| 44 | * log(1+f) = f - s*(f - R) (if f is not too large) | ||
| 45 | * log(1+f) = f - (hfsq - s*(hfsq+R)). (better accuracy) | ||
| 46 | * | ||
| 47 | * 3. Finally, log(x) = k*ln2 + log(1+f). | ||
| 48 | * = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo))) | ||
| 49 | * Here ln2 is split into two floating point number: | ||
| 50 | * ln2_hi + ln2_lo, | ||
| 51 | * where n*ln2_hi is always exact for |n| < 2000. | ||
| 52 | * | ||
| 53 | * Special cases: | ||
| 54 | * log(x) is NaN with signal if x < 0 (including -INF) ; | ||
| 55 | * log(+INF) is +INF; log(0) is -INF with signal; | ||
| 56 | * log(NaN) is that NaN with no signal. | ||
| 57 | * | ||
| 58 | * Accuracy: | ||
| 59 | * according to an error analysis, the error is always less than | ||
| 60 | * 1 ulp (unit in the last place). | ||
| 61 | * | ||
| 62 | * Constants: | ||
| 63 | * The hexadecimal values are the intended ones for the following | ||
| 64 | * constants. The decimal values may be used, provided that the | ||
| 65 | * compiler will convert from decimal to binary accurately enough | ||
| 66 | * to produce the hexadecimal values shown. | ||
| 67 | */ | ||
| 68 | |||
| 69 | #include "math_libm.h" | ||
| 70 | #include "math_private.h" | ||
| 71 | |||
| 72 | static const double | ||
| 73 | ln2_hi = 6.93147180369123816490e-01, /* 3fe62e42 fee00000 */ | ||
| 74 | ln2_lo = 1.90821492927058770002e-10, /* 3dea39ef 35793c76 */ | ||
| 75 | two54 = 1.80143985094819840000e+16, /* 43500000 00000000 */ | ||
| 76 | Lg1 = 6.666666666666735130e-01, /* 3FE55555 55555593 */ | ||
| 77 | Lg2 = 3.999999999940941908e-01, /* 3FD99999 9997FA04 */ | ||
| 78 | Lg3 = 2.857142874366239149e-01, /* 3FD24924 94229359 */ | ||
| 79 | Lg4 = 2.222219843214978396e-01, /* 3FCC71C5 1D8E78AF */ | ||
| 80 | Lg5 = 1.818357216161805012e-01, /* 3FC74664 96CB03DE */ | ||
| 81 | Lg6 = 1.531383769920937332e-01, /* 3FC39A09 D078C69F */ | ||
| 82 | Lg7 = 1.479819860511658591e-01; /* 3FC2F112 DF3E5244 */ | ||
| 83 | |||
| 84 | static const double zero = 0.0; | ||
| 85 | |||
| 86 | double attribute_hidden __ieee754_log(double x) | ||
| 87 | { | ||
| 88 | double hfsq,f,s,z,R,w,t1,t2,dk; | ||
| 89 | int32_t k,hx,i,j; | ||
| 90 | u_int32_t lx; | ||
| 91 | |||
| 92 | EXTRACT_WORDS(hx,lx,x); | ||
| 93 | |||
| 94 | k=0; | ||
| 95 | if (hx < 0x00100000) { /* x < 2**-1022 */ | ||
| 96 | if (((hx&0x7fffffff)|lx)==0) | ||
| 97 | return -two54/zero; /* log(+-0)=-inf */ | ||
| 98 | if (hx<0) return (x-x)/zero; /* log(-#) = NaN */ | ||
| 99 | k -= 54; x *= two54; /* subnormal number, scale up x */ | ||
| 100 | GET_HIGH_WORD(hx,x); | ||
| 101 | } | ||
| 102 | if (hx >= 0x7ff00000) return x+x; | ||
| 103 | k += (hx>>20)-1023; | ||
| 104 | hx &= 0x000fffff; | ||
| 105 | i = (hx+0x95f64)&0x100000; | ||
| 106 | SET_HIGH_WORD(x,hx|(i^0x3ff00000)); /* normalize x or x/2 */ | ||
| 107 | k += (i>>20); | ||
| 108 | f = x-1.0; | ||
| 109 | if((0x000fffff&(2+hx))<3) { /* |f| < 2**-20 */ | ||
| 110 | if(f==zero) {if(k==0) return zero; else {dk=(double)k; | ||
| 111 | return dk*ln2_hi+dk*ln2_lo;} | ||
| 112 | } | ||
| 113 | R = f*f*(0.5-0.33333333333333333*f); | ||
| 114 | if(k==0) return f-R; else {dk=(double)k; | ||
| 115 | return dk*ln2_hi-((R-dk*ln2_lo)-f);} | ||
| 116 | } | ||
| 117 | s = f/(2.0+f); | ||
| 118 | dk = (double)k; | ||
| 119 | z = s*s; | ||
| 120 | i = hx-0x6147a; | ||
| 121 | w = z*z; | ||
| 122 | j = 0x6b851-hx; | ||
| 123 | t1= w*(Lg2+w*(Lg4+w*Lg6)); | ||
| 124 | t2= z*(Lg1+w*(Lg3+w*(Lg5+w*Lg7))); | ||
| 125 | i |= j; | ||
| 126 | R = t2+t1; | ||
| 127 | if(i>0) { | ||
| 128 | hfsq=0.5*f*f; | ||
| 129 | if(k==0) return f-(hfsq-s*(hfsq+R)); else | ||
| 130 | return dk*ln2_hi-((hfsq-(s*(hfsq+R)+dk*ln2_lo))-f); | ||
| 131 | } else { | ||
| 132 | if(k==0) return f-s*(f-R); else | ||
| 133 | return dk*ln2_hi-((s*(f-R)-dk*ln2_lo)-f); | ||
| 134 | } | ||
| 135 | } | ||
| 136 | |||
| 137 | /* | ||
| 138 | * wrapper log(x) | ||
| 139 | */ | ||
| 140 | #ifndef _IEEE_LIBM | ||
| 141 | double log(double x) | ||
| 142 | { | ||
| 143 | double z = __ieee754_log(x); | ||
| 144 | if (_LIB_VERSION == _IEEE_ || isnan(x) || x > 0.0) | ||
| 145 | return z; | ||
| 146 | if (x == 0.0) | ||
| 147 | return __kernel_standard(x, x, 16); /* log(0) */ | ||
| 148 | return __kernel_standard(x, x, 17); /* log(x<0) */ | ||
| 149 | } | ||
| 150 | #else | ||
| 151 | strong_alias(__ieee754_log, log) | ||
| 152 | #endif | ||
| 153 | libm_hidden_def(log) | ||
