diff options
Diffstat (limited to 'contrib/SDL-3.2.8/src/libm/e_exp.c')
| -rw-r--r-- | contrib/SDL-3.2.8/src/libm/e_exp.c | 201 |
1 files changed, 201 insertions, 0 deletions
diff --git a/contrib/SDL-3.2.8/src/libm/e_exp.c b/contrib/SDL-3.2.8/src/libm/e_exp.c new file mode 100644 index 0000000..f39bb5c --- /dev/null +++ b/contrib/SDL-3.2.8/src/libm/e_exp.c | |||
| @@ -0,0 +1,201 @@ | |||
| 1 | #include "SDL_internal.h" | ||
| 2 | /* | ||
| 3 | * ==================================================== | ||
| 4 | * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. | ||
| 5 | * | ||
| 6 | * Developed at SunPro, a Sun Microsystems, Inc. business. | ||
| 7 | * Permission to use, copy, modify, and distribute this | ||
| 8 | * software is freely granted, provided that this notice | ||
| 9 | * is preserved. | ||
| 10 | * ==================================================== | ||
| 11 | */ | ||
| 12 | |||
| 13 | /* __ieee754_exp(x) | ||
| 14 | * Returns the exponential of x. | ||
| 15 | * | ||
| 16 | * Method | ||
| 17 | * 1. Argument reduction: | ||
| 18 | * Reduce x to an r so that |r| <= 0.5*ln2 ~ 0.34658. | ||
| 19 | * Given x, find r and integer k such that | ||
| 20 | * | ||
| 21 | * x = k*ln2 + r, |r| <= 0.5*ln2. | ||
| 22 | * | ||
| 23 | * Here r will be represented as r = hi-lo for better | ||
| 24 | * accuracy. | ||
| 25 | * | ||
| 26 | * 2. Approximation of exp(r) by a special rational function on | ||
| 27 | * the interval [0,0.34658]: | ||
| 28 | * Write | ||
| 29 | * R(r**2) = r*(exp(r)+1)/(exp(r)-1) = 2 + r*r/6 - r**4/360 + ... | ||
| 30 | * We use a special Reme algorithm on [0,0.34658] to generate | ||
| 31 | * a polynomial of degree 5 to approximate R. The maximum error | ||
| 32 | * of this polynomial approximation is bounded by 2**-59. In | ||
| 33 | * other words, | ||
| 34 | * R(z) ~ 2.0 + P1*z + P2*z**2 + P3*z**3 + P4*z**4 + P5*z**5 | ||
| 35 | * (where z=r*r, and the values of P1 to P5 are listed below) | ||
| 36 | * and | ||
| 37 | * | 5 | -59 | ||
| 38 | * | 2.0+P1*z+...+P5*z - R(z) | <= 2 | ||
| 39 | * | | | ||
| 40 | * The computation of exp(r) thus becomes | ||
| 41 | * 2*r | ||
| 42 | * exp(r) = 1 + ------- | ||
| 43 | * R - r | ||
| 44 | * r*R1(r) | ||
| 45 | * = 1 + r + ----------- (for better accuracy) | ||
| 46 | * 2 - R1(r) | ||
| 47 | * where | ||
| 48 | * 2 4 10 | ||
| 49 | * R1(r) = r - (P1*r + P2*r + ... + P5*r ). | ||
| 50 | * | ||
| 51 | * 3. Scale back to obtain exp(x): | ||
| 52 | * From step 1, we have | ||
| 53 | * exp(x) = 2^k * exp(r) | ||
| 54 | * | ||
| 55 | * Special cases: | ||
| 56 | * exp(INF) is INF, exp(NaN) is NaN; | ||
| 57 | * exp(-INF) is 0, and | ||
| 58 | * for finite argument, only exp(0)=1 is exact. | ||
| 59 | * | ||
| 60 | * Accuracy: | ||
| 61 | * according to an error analysis, the error is always less than | ||
| 62 | * 1 ulp (unit in the last place). | ||
| 63 | * | ||
| 64 | * Misc. info. | ||
| 65 | * For IEEE double | ||
| 66 | * if x > 7.09782712893383973096e+02 then exp(x) overflow | ||
| 67 | * if x < -7.45133219101941108420e+02 then exp(x) underflow | ||
| 68 | * | ||
| 69 | * Constants: | ||
| 70 | * The hexadecimal values are the intended ones for the following | ||
| 71 | * constants. The decimal values may be used, provided that the | ||
| 72 | * compiler will convert from decimal to binary accurately enough | ||
| 73 | * to produce the hexadecimal values shown. | ||
| 74 | */ | ||
| 75 | |||
| 76 | #include "math_libm.h" | ||
| 77 | #include "math_private.h" | ||
| 78 | |||
| 79 | #ifdef __WATCOMC__ /* Watcom defines huge=__huge */ | ||
| 80 | #undef huge | ||
| 81 | #endif | ||
| 82 | |||
| 83 | static const double | ||
| 84 | one = 1.0, | ||
| 85 | halF[2] = {0.5,-0.5,}, | ||
| 86 | huge = 1.0e+300, | ||
| 87 | twom1000= 9.33263618503218878990e-302, /* 2**-1000=0x01700000,0*/ | ||
| 88 | o_threshold= 7.09782712893383973096e+02, /* 0x40862E42, 0xFEFA39EF */ | ||
| 89 | u_threshold= -7.45133219101941108420e+02, /* 0xc0874910, 0xD52D3051 */ | ||
| 90 | ln2HI[2] ={ 6.93147180369123816490e-01, /* 0x3fe62e42, 0xfee00000 */ | ||
| 91 | -6.93147180369123816490e-01,},/* 0xbfe62e42, 0xfee00000 */ | ||
| 92 | ln2LO[2] ={ 1.90821492927058770002e-10, /* 0x3dea39ef, 0x35793c76 */ | ||
| 93 | -1.90821492927058770002e-10,},/* 0xbdea39ef, 0x35793c76 */ | ||
| 94 | invln2 = 1.44269504088896338700e+00, /* 0x3ff71547, 0x652b82fe */ | ||
| 95 | P1 = 1.66666666666666019037e-01, /* 0x3FC55555, 0x5555553E */ | ||
| 96 | P2 = -2.77777777770155933842e-03, /* 0xBF66C16C, 0x16BEBD93 */ | ||
| 97 | P3 = 6.61375632143793436117e-05, /* 0x3F11566A, 0xAF25DE2C */ | ||
| 98 | P4 = -1.65339022054652515390e-06, /* 0xBEBBBD41, 0xC5D26BF1 */ | ||
| 99 | P5 = 4.13813679705723846039e-08; /* 0x3E663769, 0x72BEA4D0 */ | ||
| 100 | |||
| 101 | union { | ||
| 102 | Uint64 u64; | ||
| 103 | double d; | ||
| 104 | } inf_union = { | ||
| 105 | SDL_UINT64_C(0x7ff0000000000000) /* Binary representation of a 64-bit infinite double (sign=0, exponent=2047, mantissa=0) */ | ||
| 106 | }; | ||
| 107 | |||
| 108 | double __ieee754_exp(double x) /* default IEEE double exp */ | ||
| 109 | { | ||
| 110 | double y; | ||
| 111 | double hi = 0.0; | ||
| 112 | double lo = 0.0; | ||
| 113 | double c; | ||
| 114 | double t; | ||
| 115 | int32_t k=0; | ||
| 116 | int32_t xsb; | ||
| 117 | u_int32_t hx; | ||
| 118 | |||
| 119 | GET_HIGH_WORD(hx,x); | ||
| 120 | xsb = (hx>>31)&1; /* sign bit of x */ | ||
| 121 | hx &= 0x7fffffff; /* high word of |x| */ | ||
| 122 | |||
| 123 | /* filter out non-finite argument */ | ||
| 124 | if(hx >= 0x40862E42) { /* if |x|>=709.78... */ | ||
| 125 | if(hx>=0x7ff00000) { | ||
| 126 | u_int32_t lx; | ||
| 127 | GET_LOW_WORD(lx,x); | ||
| 128 | if(((hx&0xfffff)|lx)!=0) | ||
| 129 | return x+x; /* NaN */ | ||
| 130 | else return (xsb==0)? x:0.0; /* exp(+-inf)={inf,0} */ | ||
| 131 | } | ||
| 132 | #if 1 | ||
| 133 | if(x > o_threshold) return inf_union.d; /* overflow */ | ||
| 134 | #elif 1 | ||
| 135 | if(x > o_threshold) return huge*huge; /* overflow */ | ||
| 136 | #else /* !!! FIXME: check this: "huge * huge" is a compiler warning, maybe they wanted +Inf? */ | ||
| 137 | if(x > o_threshold) return INFINITY; /* overflow */ | ||
| 138 | #endif | ||
| 139 | |||
| 140 | if(x < u_threshold) return twom1000*twom1000; /* underflow */ | ||
| 141 | } | ||
| 142 | |||
| 143 | /* argument reduction */ | ||
| 144 | if(hx > 0x3fd62e42) { /* if |x| > 0.5 ln2 */ | ||
| 145 | if(hx < 0x3FF0A2B2) { /* and |x| < 1.5 ln2 */ | ||
| 146 | hi = x-ln2HI[xsb]; lo=ln2LO[xsb]; k = 1-xsb-xsb; | ||
| 147 | } else { | ||
| 148 | k = (int32_t) (invln2*x+halF[xsb]); | ||
| 149 | t = k; | ||
| 150 | hi = x - t*ln2HI[0]; /* t*ln2HI is exact here */ | ||
| 151 | lo = t*ln2LO[0]; | ||
| 152 | } | ||
| 153 | x = hi - lo; | ||
| 154 | } | ||
| 155 | else if(hx < 0x3e300000) { /* when |x|<2**-28 */ | ||
| 156 | if(huge+x>one) return one+x;/* trigger inexact */ | ||
| 157 | } | ||
| 158 | else k = 0; | ||
| 159 | |||
| 160 | /* x is now in primary range */ | ||
| 161 | t = x*x; | ||
| 162 | c = x - t*(P1+t*(P2+t*(P3+t*(P4+t*P5)))); | ||
| 163 | if(k==0) return one-((x*c)/(c-2.0)-x); | ||
| 164 | else y = one-((lo-(x*c)/(2.0-c))-hi); | ||
| 165 | if(k >= -1021) { | ||
| 166 | u_int32_t hy; | ||
| 167 | GET_HIGH_WORD(hy,y); | ||
| 168 | SET_HIGH_WORD(y,hy+(k<<20)); /* add k to y's exponent */ | ||
| 169 | return y; | ||
| 170 | } else { | ||
| 171 | u_int32_t hy; | ||
| 172 | GET_HIGH_WORD(hy,y); | ||
| 173 | SET_HIGH_WORD(y,hy+((k+1000)<<20)); /* add k to y's exponent */ | ||
| 174 | return y*twom1000; | ||
| 175 | } | ||
| 176 | } | ||
| 177 | |||
| 178 | /* | ||
| 179 | * wrapper exp(x) | ||
| 180 | */ | ||
| 181 | #ifndef _IEEE_LIBM | ||
| 182 | double exp(double x) | ||
| 183 | { | ||
| 184 | static const double o_threshold = 7.09782712893383973096e+02; /* 0x40862E42, 0xFEFA39EF */ | ||
| 185 | static const double u_threshold = -7.45133219101941108420e+02; /* 0xc0874910, 0xD52D3051 */ | ||
| 186 | |||
| 187 | double z = __ieee754_exp(x); | ||
| 188 | if (_LIB_VERSION == _IEEE_) | ||
| 189 | return z; | ||
| 190 | if (isfinite(x)) { | ||
| 191 | if (x > o_threshold) | ||
| 192 | return __kernel_standard(x, x, 6); /* exp overflow */ | ||
| 193 | if (x < u_threshold) | ||
| 194 | return __kernel_standard(x, x, 7); /* exp underflow */ | ||
| 195 | } | ||
| 196 | return z; | ||
| 197 | } | ||
| 198 | #else | ||
| 199 | strong_alias(__ieee754_exp, exp) | ||
| 200 | #endif | ||
| 201 | libm_hidden_def(exp) | ||
