diff options
| author | 3gg <3gg@shellblade.net> | 2025-12-27 12:03:39 -0800 |
|---|---|---|
| committer | 3gg <3gg@shellblade.net> | 2025-12-27 12:03:39 -0800 |
| commit | 5a079a2d114f96d4847d1ee305d5b7c16eeec50e (patch) | |
| tree | 8926ab44f168acf787d8e19608857b3af0f82758 /contrib/SDL-3.2.8/src/libm/k_rem_pio2.c | |
Initial commit
Diffstat (limited to 'contrib/SDL-3.2.8/src/libm/k_rem_pio2.c')
| -rw-r--r-- | contrib/SDL-3.2.8/src/libm/k_rem_pio2.c | 315 |
1 files changed, 315 insertions, 0 deletions
diff --git a/contrib/SDL-3.2.8/src/libm/k_rem_pio2.c b/contrib/SDL-3.2.8/src/libm/k_rem_pio2.c new file mode 100644 index 0000000..3dd5b2b --- /dev/null +++ b/contrib/SDL-3.2.8/src/libm/k_rem_pio2.c | |||
| @@ -0,0 +1,315 @@ | |||
| 1 | #include "SDL_internal.h" | ||
| 2 | /* | ||
| 3 | * ==================================================== | ||
| 4 | * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. | ||
| 5 | * | ||
| 6 | * Developed at SunPro, a Sun Microsystems, Inc. business. | ||
| 7 | * Permission to use, copy, modify, and distribute this | ||
| 8 | * software is freely granted, provided that this notice | ||
| 9 | * is preserved. | ||
| 10 | * ==================================================== | ||
| 11 | */ | ||
| 12 | |||
| 13 | /* | ||
| 14 | * __kernel_rem_pio2(x,y,e0,nx,prec,ipio2) | ||
| 15 | * double x[],y[]; int e0,nx,prec; int ipio2[]; | ||
| 16 | * | ||
| 17 | * __kernel_rem_pio2 return the last three digits of N with | ||
| 18 | * y = x - N*pi/2 | ||
| 19 | * so that |y| < pi/2. | ||
| 20 | * | ||
| 21 | * The method is to compute the integer (mod 8) and fraction parts of | ||
| 22 | * (2/pi)*x without doing the full multiplication. In general we | ||
| 23 | * skip the part of the product that are known to be a huge integer ( | ||
| 24 | * more accurately, = 0 mod 8 ). Thus the number of operations are | ||
| 25 | * independent of the exponent of the input. | ||
| 26 | * | ||
| 27 | * (2/pi) is represented by an array of 24-bit integers in ipio2[]. | ||
| 28 | * | ||
| 29 | * Input parameters: | ||
| 30 | * x[] The input value (must be positive) is broken into nx | ||
| 31 | * pieces of 24-bit integers in double precision format. | ||
| 32 | * x[i] will be the i-th 24 bit of x. The scaled exponent | ||
| 33 | * of x[0] is given in input parameter e0 (i.e., x[0]*2^e0 | ||
| 34 | * match x's up to 24 bits. | ||
| 35 | * | ||
| 36 | * Example of breaking a double positive z into x[0]+x[1]+x[2]: | ||
| 37 | * e0 = ilogb(z)-23 | ||
| 38 | * z = scalbn(z,-e0) | ||
| 39 | * for i = 0,1,2 | ||
| 40 | * x[i] = floor(z) | ||
| 41 | * z = (z-x[i])*2**24 | ||
| 42 | * | ||
| 43 | * | ||
| 44 | * y[] ouput result in an array of double precision numbers. | ||
| 45 | * The dimension of y[] is: | ||
| 46 | * 24-bit precision 1 | ||
| 47 | * 53-bit precision 2 | ||
| 48 | * 64-bit precision 2 | ||
| 49 | * 113-bit precision 3 | ||
| 50 | * The actual value is the sum of them. Thus for 113-bit | ||
| 51 | * precison, one may have to do something like: | ||
| 52 | * | ||
| 53 | * long double t,w,r_head, r_tail; | ||
| 54 | * t = (long double)y[2] + (long double)y[1]; | ||
| 55 | * w = (long double)y[0]; | ||
| 56 | * r_head = t+w; | ||
| 57 | * r_tail = w - (r_head - t); | ||
| 58 | * | ||
| 59 | * e0 The exponent of x[0] | ||
| 60 | * | ||
| 61 | * nx dimension of x[] | ||
| 62 | * | ||
| 63 | * prec an integer indicating the precision: | ||
| 64 | * 0 24 bits (single) | ||
| 65 | * 1 53 bits (double) | ||
| 66 | * 2 64 bits (extended) | ||
| 67 | * 3 113 bits (quad) | ||
| 68 | * | ||
| 69 | * ipio2[] | ||
| 70 | * integer array, contains the (24*i)-th to (24*i+23)-th | ||
| 71 | * bit of 2/pi after binary point. The corresponding | ||
| 72 | * floating value is | ||
| 73 | * | ||
| 74 | * ipio2[i] * 2^(-24(i+1)). | ||
| 75 | * | ||
| 76 | * External function: | ||
| 77 | * double scalbn(), floor(); | ||
| 78 | * | ||
| 79 | * | ||
| 80 | * Here is the description of some local variables: | ||
| 81 | * | ||
| 82 | * jk jk+1 is the initial number of terms of ipio2[] needed | ||
| 83 | * in the computation. The recommended value is 2,3,4, | ||
| 84 | * 6 for single, double, extended,and quad. | ||
| 85 | * | ||
| 86 | * jz local integer variable indicating the number of | ||
| 87 | * terms of ipio2[] used. | ||
| 88 | * | ||
| 89 | * jx nx - 1 | ||
| 90 | * | ||
| 91 | * jv index for pointing to the suitable ipio2[] for the | ||
| 92 | * computation. In general, we want | ||
| 93 | * ( 2^e0*x[0] * ipio2[jv-1]*2^(-24jv) )/8 | ||
| 94 | * is an integer. Thus | ||
| 95 | * e0-3-24*jv >= 0 or (e0-3)/24 >= jv | ||
| 96 | * Hence jv = max(0,(e0-3)/24). | ||
| 97 | * | ||
| 98 | * jp jp+1 is the number of terms in PIo2[] needed, jp = jk. | ||
| 99 | * | ||
| 100 | * q[] double array with integral value, representing the | ||
| 101 | * 24-bits chunk of the product of x and 2/pi. | ||
| 102 | * | ||
| 103 | * q0 the corresponding exponent of q[0]. Note that the | ||
| 104 | * exponent for q[i] would be q0-24*i. | ||
| 105 | * | ||
| 106 | * PIo2[] double precision array, obtained by cutting pi/2 | ||
| 107 | * into 24 bits chunks. | ||
| 108 | * | ||
| 109 | * f[] ipio2[] in floating point | ||
| 110 | * | ||
| 111 | * iq[] integer array by breaking up q[] in 24-bits chunk. | ||
| 112 | * | ||
| 113 | * fq[] final product of x*(2/pi) in fq[0],..,fq[jk] | ||
| 114 | * | ||
| 115 | * ih integer. If >0 it indicates q[] is >= 0.5, hence | ||
| 116 | * it also indicates the *sign* of the result. | ||
| 117 | * | ||
| 118 | */ | ||
| 119 | |||
| 120 | |||
| 121 | /* | ||
| 122 | * Constants: | ||
| 123 | * The hexadecimal values are the intended ones for the following | ||
| 124 | * constants. The decimal values may be used, provided that the | ||
| 125 | * compiler will convert from decimal to binary accurately enough | ||
| 126 | * to produce the hexadecimal values shown. | ||
| 127 | */ | ||
| 128 | |||
| 129 | #include "math_libm.h" | ||
| 130 | #include "math_private.h" | ||
| 131 | |||
| 132 | |||
| 133 | static const int init_jk[] = {2,3,4,6}; /* initial value for jk */ | ||
| 134 | |||
| 135 | static const double PIo2[] = { | ||
| 136 | 1.57079625129699707031e+00, /* 0x3FF921FB, 0x40000000 */ | ||
| 137 | 7.54978941586159635335e-08, /* 0x3E74442D, 0x00000000 */ | ||
| 138 | 5.39030252995776476554e-15, /* 0x3CF84698, 0x80000000 */ | ||
| 139 | 3.28200341580791294123e-22, /* 0x3B78CC51, 0x60000000 */ | ||
| 140 | 1.27065575308067607349e-29, /* 0x39F01B83, 0x80000000 */ | ||
| 141 | 1.22933308981111328932e-36, /* 0x387A2520, 0x40000000 */ | ||
| 142 | 2.73370053816464559624e-44, /* 0x36E38222, 0x80000000 */ | ||
| 143 | 2.16741683877804819444e-51, /* 0x3569F31D, 0x00000000 */ | ||
| 144 | }; | ||
| 145 | |||
| 146 | static const double | ||
| 147 | zero = 0.0, | ||
| 148 | one = 1.0, | ||
| 149 | two24 = 1.67772160000000000000e+07, /* 0x41700000, 0x00000000 */ | ||
| 150 | twon24 = 5.96046447753906250000e-08; /* 0x3E700000, 0x00000000 */ | ||
| 151 | |||
| 152 | int32_t attribute_hidden __kernel_rem_pio2(const double *x, double *y, int e0, int nx, const unsigned int prec, const int32_t *ipio2) | ||
| 153 | { | ||
| 154 | int32_t jz,jx,jv,jp,jk,carry,n,iq[20],i,j,k,m,q0,ih; | ||
| 155 | double z,fw,f[20],fq[20],q[20]; | ||
| 156 | |||
| 157 | if (nx < 1) { | ||
| 158 | return 0; | ||
| 159 | } | ||
| 160 | |||
| 161 | /* initialize jk*/ | ||
| 162 | SDL_assert(prec < SDL_arraysize(init_jk)); | ||
| 163 | jk = init_jk[prec]; | ||
| 164 | SDL_assert(jk > 0); | ||
| 165 | jp = jk; | ||
| 166 | |||
| 167 | /* determine jx,jv,q0, note that 3>q0 */ | ||
| 168 | jx = nx-1; | ||
| 169 | jv = (e0-3)/24; if(jv<0) jv=0; | ||
| 170 | q0 = e0-24*(jv+1); | ||
| 171 | |||
| 172 | /* set up f[0] to f[jx+jk] where f[jx+jk] = ipio2[jv+jk] */ | ||
| 173 | j = jv-jx; m = jx+jk; | ||
| 174 | for(i=0;i<=m;i++,j++) f[i] = (j<0)? zero : (double) ipio2[j]; | ||
| 175 | if ((m+1) < SDL_arraysize(f)) { | ||
| 176 | SDL_memset(&f[m+1], 0, sizeof (f) - ((m+1) * sizeof (f[0]))); | ||
| 177 | } | ||
| 178 | |||
| 179 | /* compute q[0],q[1],...q[jk] */ | ||
| 180 | for (i=0;i<=jk;i++) { | ||
| 181 | for(j=0,fw=0.0;j<=jx;j++) fw += x[j]*f[jx+i-j]; | ||
| 182 | q[i] = fw; | ||
| 183 | } | ||
| 184 | |||
| 185 | jz = jk; | ||
| 186 | recompute: | ||
| 187 | /* distill q[] into iq[] reversingly */ | ||
| 188 | for(i=0,j=jz,z=q[jz];j>0;i++,j--) { | ||
| 189 | fw = (double)((int32_t)(twon24* z)); | ||
| 190 | iq[i] = (int32_t)(z-two24*fw); | ||
| 191 | z = q[j-1]+fw; | ||
| 192 | } | ||
| 193 | if (jz < SDL_arraysize(iq)) { | ||
| 194 | SDL_memset(&iq[jz], 0, sizeof (iq) - (jz * sizeof (iq[0]))); | ||
| 195 | } | ||
| 196 | |||
| 197 | /* compute n */ | ||
| 198 | z = scalbn(z,q0); /* actual value of z */ | ||
| 199 | z -= 8.0*floor(z*0.125); /* trim off integer >= 8 */ | ||
| 200 | n = (int32_t) z; | ||
| 201 | z -= (double)n; | ||
| 202 | ih = 0; | ||
| 203 | if(q0>0) { /* need iq[jz-1] to determine n */ | ||
| 204 | i = (iq[jz-1]>>(24-q0)); n += i; | ||
| 205 | iq[jz-1] -= i<<(24-q0); | ||
| 206 | ih = iq[jz-1]>>(23-q0); | ||
| 207 | } | ||
| 208 | else if(q0==0) ih = iq[jz-1]>>23; | ||
| 209 | else if(z>=0.5) ih=2; | ||
| 210 | |||
| 211 | if(ih>0) { /* q > 0.5 */ | ||
| 212 | n += 1; carry = 0; | ||
| 213 | for(i=0;i<jz ;i++) { /* compute 1-q */ | ||
| 214 | j = iq[i]; | ||
| 215 | if(carry==0) { | ||
| 216 | if(j!=0) { | ||
| 217 | carry = 1; iq[i] = 0x1000000- j; | ||
| 218 | } | ||
| 219 | } else iq[i] = 0xffffff - j; | ||
| 220 | } | ||
| 221 | if(q0>0) { /* rare case: chance is 1 in 12 */ | ||
| 222 | switch(q0) { | ||
| 223 | case 1: | ||
| 224 | iq[jz-1] &= 0x7fffff; break; | ||
| 225 | case 2: | ||
| 226 | iq[jz-1] &= 0x3fffff; break; | ||
| 227 | } | ||
| 228 | } | ||
| 229 | if(ih==2) { | ||
| 230 | z = one - z; | ||
| 231 | if(carry!=0) z -= scalbn(one,q0); | ||
| 232 | } | ||
| 233 | } | ||
| 234 | |||
| 235 | /* check if recomputation is needed */ | ||
| 236 | if(z==zero) { | ||
| 237 | j = 0; | ||
| 238 | for (i=jz-1;i>=jk;i--) j |= iq[i]; | ||
| 239 | if(j==0) { /* need recomputation */ | ||
| 240 | for(k=1;iq[jk-k]==0;k++); /* k = no. of terms needed */ | ||
| 241 | |||
| 242 | for(i=jz+1;i<=jz+k;i++) { /* add q[jz+1] to q[jz+k] */ | ||
| 243 | f[jx+i] = (double) ipio2[jv+i]; | ||
| 244 | for(j=0,fw=0.0;j<=jx;j++) fw += x[j]*f[jx+i-j]; | ||
| 245 | q[i] = fw; | ||
| 246 | } | ||
| 247 | jz += k; | ||
| 248 | goto recompute; | ||
| 249 | } | ||
| 250 | } | ||
| 251 | |||
| 252 | /* chop off zero terms */ | ||
| 253 | if(z==0.0) { | ||
| 254 | jz -= 1; q0 -= 24; | ||
| 255 | SDL_assert(jz >= 0); | ||
| 256 | while(iq[jz]==0) { jz--; SDL_assert(jz >= 0); q0-=24;} | ||
| 257 | } else { /* break z into 24-bit if necessary */ | ||
| 258 | z = scalbn(z,-q0); | ||
| 259 | if(z>=two24) { | ||
| 260 | fw = (double)((int32_t)(twon24*z)); | ||
| 261 | iq[jz] = (int32_t)(z-two24*fw); | ||
| 262 | jz += 1; q0 += 24; | ||
| 263 | iq[jz] = (int32_t) fw; | ||
| 264 | } else iq[jz] = (int32_t) z ; | ||
| 265 | } | ||
| 266 | |||
| 267 | /* convert integer "bit" chunk to floating-point value */ | ||
| 268 | fw = scalbn(one,q0); | ||
| 269 | for(i=jz;i>=0;i--) { | ||
| 270 | q[i] = fw*(double)iq[i]; fw*=twon24; | ||
| 271 | } | ||
| 272 | |||
| 273 | /* compute PIo2[0,...,jp]*q[jz,...,0] */ | ||
| 274 | SDL_zero(fq); | ||
| 275 | for(i=jz;i>=0;i--) { | ||
| 276 | for(fw=0.0,k=0;k<=jp&&k<=jz-i;k++) fw += PIo2[k]*q[i+k]; | ||
| 277 | fq[jz-i] = fw; | ||
| 278 | } | ||
| 279 | |||
| 280 | /* compress fq[] into y[] */ | ||
| 281 | switch(prec) { | ||
| 282 | case 0: | ||
| 283 | fw = 0.0; | ||
| 284 | for (i=jz;i>=0;i--) fw += fq[i]; | ||
| 285 | y[0] = (ih==0)? fw: -fw; | ||
| 286 | break; | ||
| 287 | case 1: | ||
| 288 | case 2: | ||
| 289 | fw = 0.0; | ||
| 290 | for (i=jz;i>=0;i--) fw += fq[i]; | ||
| 291 | y[0] = (ih==0)? fw: -fw; | ||
| 292 | fw = fq[0]-fw; | ||
| 293 | for (i=1;i<=jz;i++) fw += fq[i]; | ||
| 294 | y[1] = (ih==0)? fw: -fw; | ||
| 295 | break; | ||
| 296 | case 3: /* painful */ | ||
| 297 | for (i=jz;i>0;i--) { | ||
| 298 | fw = fq[i-1]+fq[i]; | ||
| 299 | fq[i] += fq[i-1]-fw; | ||
| 300 | fq[i-1] = fw; | ||
| 301 | } | ||
| 302 | for (i=jz;i>1;i--) { | ||
| 303 | fw = fq[i-1]+fq[i]; | ||
| 304 | fq[i] += fq[i-1]-fw; | ||
| 305 | fq[i-1] = fw; | ||
| 306 | } | ||
| 307 | for (fw=0.0,i=jz;i>=2;i--) fw += fq[i]; | ||
| 308 | if(ih==0) { | ||
| 309 | y[0] = fq[0]; y[1] = fq[1]; y[2] = fw; | ||
| 310 | } else { | ||
| 311 | y[0] = -fq[0]; y[1] = -fq[1]; y[2] = -fw; | ||
| 312 | } | ||
| 313 | } | ||
| 314 | return n&7; | ||
| 315 | } | ||
