1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
|
module Spear.Math.QuadTree
(
QuadTree
, makeQuadTree
, clone
, Spear.Math.QuadTree.insert
, Spear.Math.QuadTree.map
, gmap
)
where
import Spear.Collision
import Spear.Math.AABB
import Spear.Math.Vector
import Control.Applicative ((<*>))
import Data.List
import Data.Functor
import Data.Monoid
import qualified Data.Foldable as F
-- | Represents an QuadTree.
data QuadTree e
= QuadTree
{ root :: !AABB
, ents :: ![e]
, c1 :: !(QuadTree e)
, c2 :: !(QuadTree e)
, c3 :: !(QuadTree e)
, c4 :: !(QuadTree e)
, c5 :: !(QuadTree e)
, c6 :: !(QuadTree e)
, c7 :: !(QuadTree e)
, c8 :: !(QuadTree e)
}
|
Leaf
{ root :: !AABB
, ents :: ![e]
}
-- | Builds an QuadTree using the specified AABB as the root and having the specified depth.
makeQuadTree :: Int -> AABB -> QuadTree e
makeQuadTree d root@(AABB min max)
| d == 0 = Leaf root []
| otherwise = QuadTree root [] c1 c2 c3 c4 c5 c6 c7 c8
where
boxes = subdivide root
c1 = makeQuadTree (d-1) $ boxes !! 0
c2 = makeQuadTree (d-1) $ boxes !! 1
c3 = makeQuadTree (d-1) $ boxes !! 2
c4 = makeQuadTree (d-1) $ boxes !! 3
c5 = makeQuadTree (d-1) $ boxes !! 4
c6 = makeQuadTree (d-1) $ boxes !! 5
c7 = makeQuadTree (d-1) $ boxes !! 6
c8 = makeQuadTree (d-1) $ boxes !! 7
subdivide :: AABB -> [AABB]
subdivide (AABB min max) = [a1, a2, a3, a4, a5, a6, a7, a8]
where
v = (max-min) / 2
c = vec2 (x min + x v) (y min + y v)
a1 = AABB min c
a2 = AABB ( vec2 (x min) (y min)) ( vec2 (x c) (y c) )
a3 = AABB ( vec2 (x min) (y c) ) ( vec2 (x c) (y max))
a4 = AABB ( vec2 (x min) (y c) ) ( vec2 (x c) (y max))
a5 = AABB ( vec2 (x c) (y min)) ( vec2 (x max) (y c) )
a6 = AABB ( vec2 (x c) (y min)) ( vec2 (x max) (y c) )
a7 = AABB ( vec2 (x c) (y c) ) ( vec2 (x max) (y max))
a8 = AABB c max
-- | Clones the structure of an octree. The new octree has no entities.
clone :: QuadTree e -> QuadTree e
clone (Leaf root ents) = Leaf root []
clone (QuadTree root ents c1 c2 c3 c4 c5 c6 c7 c8) = QuadTree root [] c1' c2' c3' c4' c5' c6' c7' c8'
where
c1' = clone c1
c2' = clone c2
c3' = clone c3
c4' = clone c4
c5' = clone c5
c6' = clone c6
c7' = clone c7
c8' = clone c8
keep :: (e -> AABB -> CollisionType) -> AABB -> e -> Bool
keep testAABB aabb e = test == FullyContainedBy
where test = e `testAABB` aabb
-- | Inserts a list of entities into the given octree.
insert :: (e -> AABB -> CollisionType) -> QuadTree e -> [e] -> QuadTree e
insert testAABB octree es = octree' where (octree', _) = insert' testAABB es octree
insert' :: (e -> AABB -> CollisionType) -> [e] -> QuadTree e -> (QuadTree e, [e])
insert' testAABB es (Leaf root ents) = (Leaf root ents', outliers)
where
ents' = ents ++ ents_kept
ents_kept = filter (keep testAABB root) es
outliers = filter (not . keep testAABB root) es
insert' testAABB es (QuadTree root ents c1 c2 c3 c4 c5 c6 c7 c8) =
(QuadTree root ents' c1' c2' c3' c4' c5' c6' c7' c8', outliers)
where
ents' = ents ++ ents_kept
new_ents = es ++ ents1 ++ ents2 ++ ents3 ++ ents4 ++ ents5 ++ ents6 ++ ents7 ++ ents8
ents_kept = filter (keep testAABB root) new_ents
outliers = filter (not . keep testAABB root) new_ents
(c1', ents1) = insert' testAABB es c1
(c2', ents2) = insert' testAABB es c2
(c3', ents3) = insert' testAABB es c3
(c4', ents4) = insert' testAABB es c4
(c5', ents5) = insert' testAABB es c5
(c6', ents6) = insert' testAABB es c6
(c7', ents7) = insert' testAABB es c7
(c8', ents8) = insert' testAABB es c8
-- | Extracts all entities from an octree. The resulting octree has no entities.
extract :: QuadTree e -> (QuadTree e, [e])
extract (Leaf root ents) = (Leaf root [], ents)
extract (QuadTree root ents c1 c2 c3 c4 c5 c6 c7 c8) = (QuadTree root [] c1' c2' c3' c4' c5' c6' c7' c8', ents')
where
(c1', ents1) = extract c1
(c2', ents2) = extract c2
(c3', ents3) = extract c3
(c4', ents4) = extract c4
(c5', ents5) = extract c5
(c6', ents6) = extract c6
(c7', ents7) = extract c7
(c8', ents8) = extract c8
ents' = ents ++ ents1 ++ ents2 ++ ents3 ++ ents4 ++ ents5 ++ ents6 ++ ents7 ++ ents8
-- | Applies the given function to the entities in the octree.
-- Entities that break out of their cell are reallocated appropriately.
map :: (e -> AABB -> CollisionType) -> (e -> e) -> QuadTree e -> QuadTree e
map testAABB f o =
let (o', outliers) = map' testAABB f o
in Spear.Math.QuadTree.insert testAABB o' outliers
map' :: (e -> AABB -> CollisionType) -> (e -> e) -> QuadTree e -> (QuadTree e, [e])
map' testAABB f (Leaf root ents) = (Leaf root ents_kept, outliers)
where
ents' = fmap f ents
ents_kept = filter (keep testAABB root) ents'
outliers = filter (not . keep testAABB root) ents'
map' testAABB f (QuadTree root ents c1 c2 c3 c4 c5 c6 c7 c8) =
(QuadTree root ents_kept c1' c2' c3' c4' c5' c6' c7' c8', outliers)
where
ents' = (fmap f ents) ++ out1 ++ out2 ++ out3 ++ out4 ++ out5 ++ out6 ++ out7 ++ out8
ents_kept = filter (keep testAABB root) ents'
outliers = filter (not . keep testAABB root) ents'
(c1', out1) = map' testAABB f c1
(c2', out2) = map' testAABB f c2
(c3', out3) = map' testAABB f c3
(c4', out4) = map' testAABB f c4
(c5', out5) = map' testAABB f c5
(c6', out6) = map' testAABB f c6
(c7', out7) = map' testAABB f c7
(c8', out8) = map' testAABB f c8
-- | Applies a function to the entity groups in the octree.
-- Entities that break out of their cell are reallocated appropriately.
gmap :: (e -> AABB -> CollisionType) -> (e -> e -> e) -> QuadTree e -> QuadTree e
gmap testAABB f o =
let (o', outliers) = gmap' testAABB f o
in Spear.Math.QuadTree.insert testAABB o' outliers
gmap' :: (e -> AABB -> CollisionType) -> (e -> e -> e) -> QuadTree e -> (QuadTree e, [e])
gmap' testAABB f (Leaf root ents) = (Leaf root ents_kept, outliers)
where
ents' = f <$> ents <*> ents
ents_kept = filter (keep testAABB root) ents'
outliers = filter (not . keep testAABB root) ents'
gmap' testAABB f (QuadTree root ents c1 c2 c3 c4 c5 c6 c7 c8) =
(QuadTree root ents_kept c1' c2' c3' c4' c5' c6' c7' c8', outliers)
where
ents' = (f <$> ents <*> ents) ++ out1 ++ out2 ++ out3 ++ out4 ++ out5 ++ out6 ++ out7 ++ out8
ents_kept = filter (keep testAABB root) ents'
outliers = filter (not . keep testAABB root) ents'
(c1', out1) = gmap' testAABB f c1
(c2', out2) = gmap' testAABB f c2
(c3', out3) = gmap' testAABB f c3
(c4', out4) = gmap' testAABB f c4
(c5', out5) = gmap' testAABB f c5
(c6', out6) = gmap' testAABB f c6
(c7', out7) = gmap' testAABB f c7
(c8', out8) = gmap' testAABB f c8
population :: QuadTree e -> Int
population = F.foldr (\_ acc -> acc+1) 0
instance Functor QuadTree where
fmap f (Leaf root ents) = Leaf root $ fmap f ents
fmap f (QuadTree root ents c1 c2 c3 c4 c5 c6 c7 c8) =
QuadTree root (fmap f ents) c1' c2' c3' c4' c5' c6' c7' c8'
where
c1' = fmap f c1
c2' = fmap f c2
c3' = fmap f c3
c4' = fmap f c4
c5' = fmap f c5
c6' = fmap f c6
c7' = fmap f c7
c8' = fmap f c8
instance F.Foldable QuadTree where
foldMap f (Leaf root ents) = mconcat . fmap f $ ents
foldMap f (QuadTree root ents c1 c2 c3 c4 c5 c6 c7 c8) =
mconcat (fmap f ents) `mappend`
c1' `mappend` c2' `mappend` c3' `mappend` c4' `mappend`
c5' `mappend` c6' `mappend` c7' `mappend` c8'
where
c1' = F.foldMap f c1
c2' = F.foldMap f c2
c3' = F.foldMap f c3
c4' = F.foldMap f c4
c5' = F.foldMap f c5
c6' = F.foldMap f c6
c7' = F.foldMap f c7
c8' = F.foldMap f c8
|